The growth of Taylor vortices in flow between rotating cylinders

Author:

Davey A.

Abstract

In flow between concentric rotating circular cylinders, it was shown by Taylor (1923) that instability may occur in the form of toroidal vortices spaced regularly along the axis. When the vortex motion occurs additional torque is required to keep the cylinders in motion at given speeds. Stuart (1958) used an energy-balance method, in the case when the annular gap is small compared with the radius, to estimate the additional torque and the associated finite amplitude attained by the vortices. He included the effect of distortion of the mean motion, but ignored the generation of harmonics of the fundamental mode and the distortion of the velocity associated with the fundamental mode. It is now known that these are not valid mathematical approximations and a rigorous perturbation expansion is developed here to remedy the deficiency. The analysis is valid for any gap width and any angular speeds of the containing cylinders, but requires the amplification rate of the disturbance to be small.Numerical results using a digital computer are obtained for the shape and amplitude of the vortices in three cases: (i) when the outer cylinder has twice the radius of the inner one and is kept at rest, (ii) when the gap is small and the cylinders rotate with nearly the same speeds, and (iii) when the gap is small and the outer cylinder is kept at rest. The equilibrium amplitude obtained in the last case is substantially the same as that found by Stuart.The results for cases (i) and (iii) give close agreement with the experimental values obtained by Taylor (1936) and Donnelly (1958) for the torque required to keep the inner cylinder rotating with constant speed while the outer one is at rest, for a certain range of speeds. In the small-gap problem it is shown that the equilibrium amplitude is almost proportional to 1 − m, where m is the ratio of the angular speeds of the outer and inner cylinders.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

1. Taylor, G. I. 1936 Proc. Roy. Soc. A,157,546.

2. Kirchgässner, K. 1961 Z. angew. Math. Phys. 12,14.

3. Donnelly, R. J. & Simon, N. J. 1960 J. Fluid Mech. 7,401.

4. Stuart, J. T. 1958 J. Fluid Mech. 4,1.

5. Pellew, A. & Southwell, R. V. 1940 Proc. Roy. Soc. A,176,312.

Cited by 243 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3