Lagrangian velocity covariance in helical turbulence

Author:

Kraichnan Robert H.

Abstract

The effect of helicity on the Lagrangian velocity covarianceUL(t) in isotropic, normally distributed turbulence is examined by computer simulation and by a renormalized perturbation expansion forUL(t). The first term of the latter represents Corrsin's (1959) conjecture (extrapolated to allt), which relatesUL(t) to the Eulerian covariance and the distributionG(x, t) of fluid-element displacement. Truncation of the expansion at the first term yields the direct-interaction approximation forG(x, t). The expansion suggests that with or without helicity Corrsin's conjecture is valid ast→ ∞ and that in either caseUL(t) behaves asymptotically like$t^{-(r+\frac{3}{2})}$if the spectrum of the Eulerian field varies likekr+2at small wavenumbers. Corrsin's conjecture breaks down at small and moderatetif there is strong helicity while remaining accurate at alltin the mirror-symmetric case. Computer simulations for a frozen Eulerian field with spectrum confined to a thin spherical shell inkspace indicate that strong helicity induces an increase in the Lagrangian correlation time by a factor of approximately three. Direct-interaction equations are constructed for the Lagrangian space-time covariance and the resulting prediction forUL(t) is compared with the simulations. The effect of helicity is well represented quantitatively by the direct-interaction equations for small and moderatetbut not for larget. These frozen-field results imply good quantitative accuracy at alltin time-varying turbulence whose Eulerian correlation time is of the order of the eddy-circulation time. In turbulence with weak helicity, the directinteraction equations imply that the Lagrangian correlation of vorticity with initial velocity is more persistent thanUL(t), by a substantial factor.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3