The hydraulics of a stratified fluid flowing through a contraction

Author:

Armi Laurence,Williams Richard

Abstract

The steady hydraulics of a continuously stratified fluid flowing from a stagnant reservoir through a horizontal contraction was studied experimentally and theoretically. As the channel narrows, the flow accelerates through a succession of virtual controls, at each of which the flow passes from sub-critical to supercritical with respect to a particular wave mode. When the narrowest section acts as a control, the flow is asymmetric about the narrowest section, supercritical in the divergent section and self- similar throughout the channel. With increased flow rate a new enclosed self-similar solution was found with level isopycnals and velocity uniform with depth. This flow is only symmetric in the immediate neighbourhood of the narrowest section, and in the divergent section remains supercritical with respect to higher internal modes, has separation isopycnals and splits into one or more jets separated by regions of stagnant, constant-density fluid. Flows which are subcritical with respect to lowest modes can also be asymmetric about the narrowest section for higher internal modes. The experiments are interpreted using steady, inviscid hydraulic theory. Solutions require separation isopycnals and regions of stationary, constant-density fluid in the divergent section.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. Long, R. R. 1953 Some aspects of the flow of stratified fluids. III. Continuous density gradients.Tellus 7,341–357.

2. Long, R. R. 1953 Some aspects of the flow of stratified fluids. I. A theoretical investigation.Tellus 5,42–58.

3. Bernstein, A. , Heiser, W. H. & Hevenor, C. 1967 Compound-compressible nozzle flow.Trans. ASMEE: J. Appl. Mech. 34,548–554.

4. Wood, I. R. 1968 Selective withdrawal from a stably stratified fluid.J. Fluid Mech. 32,209–223.

5. Benjamin, T. B. 1981 Steady flows drawn from a stably stratified reservoir.J. Fluid Mech. 106,245–260.

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3