Author:
KANSO EVA,OSKOUEI BABAK GHAEMI
Abstract
This paper considers the dynamics of a rigid body interacting with point vortices in a perfect fluid. The fluid velocity is obtained using the classical complex variables theory and conformal transformations. The equations of motion of the solid–fluid system are formulated in terms of the solid variables and the position of the point vortices only. These equations are applied to study the dynamic interaction of an elliptic cylinder with vortex pairs because of its relevance to understanding the swimming of fish in an ambient vorticity field. Two families of relative equilibria are found: moving Föppl equilibria; and equilibria along the ellipse's axis of symmetry (the axis perpendicular to the direction of motion). The two families of relative equilibria are similar to those present in the classical problem of flow past a fixed body, but their stability differs significantly from the classical ones.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献