The mechanism of detonation attenuation by a porous medium and its subsequent re-initiation

Author:

RADULESCU MATEI I.,MAXWELL BRIAN McN.

Abstract

The attenuation and re-initiation mechanism of detonations transmitted through a porous section consisting of a two-dimensional array of staggered cylinders was investigated experimentally and numerically for acetylene–oxygen mixtures. It was found that the leading order attenuation mechanism is the wave diffraction around the cylinders. The local re-amplification permitting the self-propagation of the wave was due to wave reflections from adjacent obstacles. The critical conditions for transmittance of a detonation wave were found to correspond approximately to a pore size equal to approximately 30–60 detonation induction lengths, or one to two cell sizes. For quenched detonations, the re-initiation mechanism was found to rely on wave reflections from neighbouring pores. Depending on the mixture sensitivity, one or several shock reflections may be necessary to re-amplify the attenuated detonation wave back to a self-sustained wave. For the latter case, a novel mechanism was identified, where each shock reflection gives rise to a significant enhancement of the gas reactivity and burnout of large portions of unreacted gas. This leads to a slow acceleration of the leading front, punctuated by small-scale local sudden re-accelerations. The resulting wave interactions give rise to a topologically complex reaction zone structure consisting of alternating layers of reacted and unreacted gas. The role of turbulent diffusive burning during this transient is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3