On the mathematics of fluidization Part 1. Fundamental equations and wave propagation

Author:

Murray J. D.

Abstract

When the upward flow of a fluid through a bed of particles of appropriate and almost uniform size is rapid enough so that the drag on each particle is as great as the particles buoyant weight, the particles do not remain close packed and the bed is said to be fluidized. Industrial uses of fluidized beds in the chemical and petroleum industries in particular are already extensive. Uses in the atomicenergy industry are being developed.In this paper a mathematical model which describes the phenomena on a continuum basis is deduced. With this model we find that the system is unstable to small internal disturbances. Alternatively, we find that surface waves can be propagated (with attenuation) in the composite fluid and these waves for fluidized beds with a high ratio of solids density to fluid density are stable. These results are in agreement with experiment. Hot beds, where strongly exothermic reactions may be taking place, centrifugal beds (beds fluidized within a rotating system), and electromagnetic beds (those in which the particulate phase is electrically conducting) are all shown to be unstable to small internal disturbances.The equations derived here may also be used as approximate equations for dispersed particle two-phase flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference13 articles.

1. Hinze, J. O. 1961 Appl. Sci. Res. A,11,33.

2. Jackson, R. 1963 Trans. Inst. Chem. Engrs,41,13.

3. Leva, M. 1959 Fluidization. New York:McGraw-Hill.

4. Carrier, G. F. & Cashwell, E. D. 1956 Unpublished Los Alamos report.

5. Botterill, J. S. M. 1958 Chem. Engng Practice,6,21.

Cited by 239 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3