The motion of long bubbles in polygonal capillaries. Part 2. Drag, fluid pressure and fluid flow

Author:

Wong Harris,Radke C. J.,Morris S.

Abstract

This work determines the pressure–velocity relation of bubble flow in polygonal capillaries. The liquid pressure drop needed to drive a long bubble at a given velocity U is solved by an integral method. In this method, the pressure drop is shown to balance the drag of the bubble, which is determined by the films at the two ends of the bubble. Using the liquid-film results of Part 1 (Wong, Radke & Morris 1995), we find that the drag scales as Ca2/3 in the limit Ca → 0 (Ca μU/σ, where μ is the liquid viscosity and σ the surface tension). Thus, the pressure drop also scales as Ca2/3. The proportionality constant for six different polygonal capillaries is roughly the same and is about a third that for the circular capillary.The liquid in a polygonal capillary flows by pushing the bubble (plug flow) and by bypassing the bubble through corner channels (corner flow). The resistance to the plug flow comes mainly from the drag of the bubble. Thus, the plug flow obeys the nonlinear pressure–velocity relation of the bubble. Corner flow, however, is chiefly unidirectional because the bubble is long. The ratio of plug to corner flow varies with liquid flow rate Q (made dimensionless by σa2/μ, where a is the radius of the largest inscribed sphere). The two flows are equal at a critical flow rate Qc, whose value depends strongly on capillary geometry and bubble length. For the six polygonal capillaries studied, Qc [Lt ] 10−6. For Qc [Lt ] Q [Lt ] 1, the plug flow dominates, and the gradient in liquid pressure varies with Q2/3. For Q [Lt ] Qc, the corner flow dominates, and the pressure gradient varies linearly with Q. A transition at such low flow rates is unexpected and partly explains the complex rheology of foam flow in porous media.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. Bretherton, F. P. 1961 The motion of long bubbles in tubes.J. Fluid Mech. 10,166–188.

2. Wong, H. , Morris, S. & Radke, C. J. 1992 Two-dimensional menisci in non-axisymmetric capillaries.J. Colloid Interface Sci. 148,284–287.

3. Mayer, R. P. & Stowe, R. A. 1965 Mercury porosimetry-breakthrough pressure for penetration between packed spheres.J. Colloid Sci. 20,893–911.

4. Ransohoff, T. C. & Radke, C. J. 1988 Laminar flow of a wetting liquid along the corners of a predominantly gas-occupied noncircular pore.J. Colloid Interface Sci. 121,392–401.

5. Wong, H. 1992 The motion of a long bubble in polygonal capillaries at low capillary numbers.PhD thesis, University of California,Berkeley.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3