The spectral broadening of sound by turbulent shear layers. Part 2. The spectral broadening of sound and aircraft noise

Author:

Campos L. M. B. C.

Abstract

It has been observed experimentally by Candel, Julienne & Julliand (1975) that a monochromatic test tone generated by a source inside a jet is received outside as a broad frequency band of definite shape. This phenomenon of spectral broadening occurs during transmission through the shear layer, which generally has a randomly irregular and unsteady shape, contains in addition distributed turbulence, and separates the jet and the ambient medium. We show in the first place that, in the audible range of frequencies, neither the approximation which treats the shear layer as a scattering interface with a convected undulating shape nor the opposite, high frequency limit obtained by means of asymptotic estimation of integrals derived for the diffraction of rays in turbulence is sufficient to provide a satisfactory theory of the observations. The refraction integrals obtained in part 1 have to be evaluated exactly in order to account for the phenomenon of spectral broadening, the methods used possibly being of interest in other branches of wave theory. The formation of the transmitted spectrum from an incident tone can be illustrated by representing a simple shear layer as an array of elements each re-radiating energy received from the source with its own characteristic attenuation and frequency shift. A computer program is used to obtain spectra under conditions corresponding to the experiments of Candel, Guédel & Julienne (1975) and gives encouraging agreement with their measurements, which were made with high frequency sources immersed in low speed jets. The theory can also be applied to the prediction of spectra received at various angles to the axis of high subsonic jets, but depends on extrapolation when supersonic exhausts are considered. We conclude with an example of the possible relevance of spectral broadening as a means of reducing the noise disturbance from current jet-powered aircraft, such as Concorde.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Jones, D. S. 1974 A linear model of a finite amplitude Helmholtz instability.Proc. Roy. Soc. A338,17–41.

2. Phillips, O. M. 1960 On the generation of sound by supersonic turbulent shear layers.J. Fluid Mech. 9,1–28.

3. Chernov, L. A. 1967 Wave Propagation in a Random Medium .Dover.

4. Lighthill, M. J. 1958 Fourier Transforms and Generalised Functions .Cambridge University Press.

5. Sholnik, M. I. 1962 Introduction to Radar Systems .McGraw-Hill.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3