Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized ‘edge’ states

Author:

WILLIS ASHLEY P.,KERSWELL RICH R.

Abstract

Fully three-dimensional computations of flow through a long pipe demand a huge number of degrees of freedom, making it very expensive to explore parameter space and difficult to isolate the structure of the underlying dynamics. We therefore introduce a ‘2+ε-dimensional’ model of pipe flow, which is a minimal three-dimensionalization of the axisymmetric case: only sinusoidal variation in azimuth plus azimuthal shifts are retained; yet the same dynamics familiar from experiments are found. In particular the model retains the subcritical dynamics of fully resolved pipe flow, capturing realistic localized ‘puff-like’ structures which can decay abruptly after long times, as well as global ‘slug’ turbulence. Relaminarization statistics of puffs reproduce the memoryless feature of pipe flow and indicate the existence of a Reynolds number about which lifetimes diverge rapidly, provided that the pipe is sufficiently long. Exponential divergence of the lifetime is prevalent in shorter periodic domains. In a short pipe, exact travelling-wave solutions are found near flow trajectories on the boundary between laminar and turbulent flow. In a long pipe, the attracting state on the laminar–turbulent boundary is a localized structure which resembles a smoothened puff. This ‘edge’ state remains localized even for Reynolds numbers at which the turbulent state is global.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3