Stability of the flow in a differentially heated inclined box

Author:

Hart John E.

Abstract

The effect of sloping boundaries on thermal convection is studied theoretically and in the laboratory in the context of a model in which fluid is contained in a differentially heated rectangular box of small aspect ratio (depth/length), inclined at an angle δ to the vertical. Like its two limiting cases, Bénard convection and convection in the vertical slot, a basic state which exists for low Rayleigh numbers becomes unstable as this parameter is increased. The types of instability and indeed the manner in which the motions become turbulent depend crucially on δ. In our work with water the following general picture of the primary instabilities applies: For 90° > δ > 10° with the bottom plate hotter, the instabilities are stationary longitudinal convectively driven rolls with axes oriented up the slope. Near δ = 10° there is an upper and lower Rayleigh number cut off. If the Rayleigh number is too small diffusion damps the instabilities, but if it is too large they are damped by the development of a stable upslope temperature gradient in the mean flow.For 10° > δ > −10° (negative angles imply a hotter upper plate), transverse travelling waves oriented across the slope are the first instabilities of the mean flow. They obtain their kinetic energy via the working of the upslope buoyancy force.For - 10° > δ > −85° longitudinal modes are again observed. These are rather curious in that they may exist when the stratification $-\hat{g}\cdot\nabla T $ is everywhere positive. The necessary energy for these modes comes out of the mean velocity field and out of the mean available potential energy.Agreement between the stability theory and the experiments is generally quite good over the whole range of δ, considering the approximations involved in finding a suitable basic flow solution.For Rayleigh numbers less than ∼ 106 turbulence is only possible for positive angles. For 85° > δ > 20° the development of unsteadiness involves the occurrence and the breaking of wavy longitudinal vortices in a manner reminiscent of the development of turbulence in cylindrical Couette flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference25 articles.

1. Batchelor, G. K. 1954 Quart. Appl. Math. 12,209–233.

2. Rayleigh, L. 1916 Phil. Mag. 32, series 6.

3. Gallagher, A. & McDmercer, A. 1965 Proc. Roy. Soc A286,117–128.

4. Eckert, E. R. G. & Carlson, W. O. 1961 Int. J. Heat & Mass Transfer,2,106–120.

5. Koschmieder, E. 1966 Beitr. Phys. Atmos. 39,1–11.

Cited by 268 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3