Numerical study of convection in the horizontal Bridgman configuration under the action of a constant magnetic field. Part 1. Two-dimensional flow

Author:

BEN HADID HAMDA,HENRY DANIEL,KADDECHE SLIM

Abstract

Studies of convection in the horizontal Bridgman configuration were performed to investigate the flow structures and the nature of the convective regimes in a rectangular cavity filled with an electrically conducting liquid metal when it is subjected to a constant vertical magnetic field. Under some assumptions analytical solutions were obtained for the central region and for the turning flow region. The validity of the solutions was checked by comparison with the solutions obtained by direct numerical simulations. The main effects of the magnetic field are first to decrease the strength of the convective flow and then to cause a progressive modification of the flow structure followed by the appearance of Hartmann layers in the vicinity of the rigid walls. When the Hartmann number is large enough, Ha > 10, the decrease in the velocity asymptotically approaches a power-law dependence on Hartmann number. All these features are dependent on the dynamic boundary conditions, e.g. confined cavity or cavity with a free upper surface, and on the type of driving force, e.g. buoyancy and/or thermocapillary forces. From this study we generate scaling laws that govern the influence of applied magnetic fields on convection. Thus, the influence of various flow parameters are isolated, and succinct relationships for the influence of magnetic field on convection are obtained. A linear stability analysis was carried out in the case of an infinite horizontal layer with upper free surface. The results show essentially that the vertical magnetic field stabilizes the flow by increasing the values of the critical Grashof number at which the system becomes unstable and modifies the nature of the instability. In fact, the range of Prandtl number over which transverse oscillatory modes prevail shrinks progressively as the Hartmann number is increased from zero to 5. Therefore, longitudinal oscillatory modes become the preferred modes over a large range of Prandtl number.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3