Linearized buoyant motion in a closed container

Author:

Jischke M. C.,Doty R. T.

Abstract

An arbitrarily-shaped, closed container completely filled with fluid is considered. It is assumed that the fluid is originally in a stably-stratified state of rest, and that at an initial instant the temperature of the container walls is impulsively changed. The ensuing unsteady laminar motion is found by solving the linearized Boussinesq equations governing buoyancy-driven flows. A ‘boundarylayer/inviscid-interior’ decomposition leads to a modified asymptotic expansion scheme of analysis. The boundary-layer concept is valid only for large values of the Rayleigh number, and, in addition, we limit the Prandtl number to order unity. It is found that the inviscid interior region heats up by means of a convection process that is driven by suction induced by the boundary layer. The inviscid, adiabatic interior responds to a special horizontal ‘average’ value of the container temperature perturbation. The boundary layer smears out, or averages, any circumferential variation in this perturbation, so that the interior, in effect, responds to an isothermal boundary in each horizontal plane. The interior temperature and vertical velocity component are expressed simply in terms of this horizontal ‘average’ container temperature. The horizontal velocity potential is governed by a Poisson equation, whose solution is developed for several specific geometries to illustrate the nature of the flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference11 articles.

1. Sakurai, T. & Matsuda, T. 1972 A temperature adjustment process in a Boussinesq fluid via a buoyancy-induced meridional circulation.J. Fluid Mech. 54,419.

2. Greenspan, H. P. 1965 On the general theory of contained rotating fluid motions.J. Fluid Mech. 22,449.

3. Crabtree, L. F. , KÜCHEMANN, D. & Sowerby, L. 1963 In Laminar Boundary Layers (ed. L. Rosenhead ) ch. 8)Oxford University Press.

4. Siegmann, W. L. 1971 The spin-down of rotating stratified fluids.J. Fluid Mech. 47,689.

5. Barcilon, V. & Pedlosky, J. 1967 Linear theory of rotating stratified fluid motions.J. Fluid Mech. 29,1.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3