A note on turbulence measurements with a laser velocimeter

Author:

Lau J. C.,Whiffen M. C.,Fisher M. J.,Smith D. M.

Abstract

In recent comparative measurements using a burst-counter type laser velocimeter and a hot-wire anemometer to assess the capabilities of the velocimeter (e.g. Barnett & Giel 1976; Lau, Morris & Fisher 1979), it was found that the laser velocimeter held good promise as an instrument for turbulence research, especially in high speed, high temperature flows where a hot-wire cannot be used. The axial mean velocities obtained with the LV compared very well with hot-wire measurements. Similarly, the characteristic shapes of the spectra and probability density distributions of the velocity fluctuations were faithfully reproduced. The trends in the distributions of the various turbulence characteristics (e.g. turbulence intensity, velocity covariances, skewness and kurtosis) in a given flow field were identical to those obtained with hotwires. The one significant difference between LV and hot-wire results was the magnitudes of the turbulence level. Since the LV results were obtained with the help of the latest validation and discrimination techniques (Asher 1973), which have now become standard equipment (Durst, Melling & Whitelaw 1976), such a discrepancy was unexpected. The reason for the discrepancy is now fairly clear and a method has been suggested by Whiffen, Lau & Smith (1978) on how to eliminate the error. But the approach is lengthy and time-consuming. This paper describes a method which effectively accomplishes the same end with less effort.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

1. Barnett, D. O. & Giel, T. V. 1976 Application of a two-component Bragg-diffracted laser velocimeter to turbulence measurements in a subsonic jet. Arnold Engng Dev. Center AEDC TR-76-36.

2. Whiffen, M. C. 1975 Polar response of an LV measurement volume. Proc. Minnesota Symp. on Laser Anemometry , pp.589–590.

3. Davies, P. O. A. L. 1966 Turbulence structure in free shear layer.A.I.A.A.J. 4,1971–1978.

4. Perry, A. E. , Smits, A. J. & Chong, M. S. 1979 The effects of certain low frequency phenomena on the calibration of hot-wires.J. Fluid Mech. 90,415–431.

5. Durst, F. 1975 Electronic processing of optical anemometer signals. Proc. LDA-Symp., Copenhagen .

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3