On the motion of thin airfoils in fluids of finite electrical conductivity

Author:

McCune James E.

Abstract

A two-dimensional, small-perturbation theory for the steady motion of thin lifting airfoils in an incompressible conducting fluid, with the uniform applied magnetic field perpendicular to (and in the plane of) the undisturbed, uniform flow field, is described. The conductivity of the fluid is assumed to be such that the magnetic Reynolds number,Rm, of the flow is large but finite. Within this assumption, a theory based on superposition of sinusoidal modes is constructed and applied to some simple thin airfoil problems.It is shown that with this particular field geometry the Alfvén wave mechanism is important in making possible very deep penetration into the flow field of currents and their associated vorticity. It is also shown that the current penetration for an airfoil is much larger than for a wavy wall of wavelength equal to the airfoil chord.A value ofRm= 5 is found to be a good approximation to infinity in this study; in fact, use of the present technique for values ofRmof the order of unity is permissible. These results provide an indication of what is meant by ‘large’ magnetic Reynolds number in two-dimensional magneto-aerodynamics.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference8 articles.

1. Lighthill, M. J. 1956 Surveys in Mechanics (ed. G. K. Batchelor and R. M. Davies ).Cambridge University Press.

2. Rott, N. & Cheng, H. K. 1954 J. Rat. Mech. Anal. 3,357.

3. Sears, W. R. & Resler, E. L. Jr. ,1959 J. Fluid Mech. 5,257.

4. Resler, E. L. Jr. , & McCune, J. E. 1960 Rev. Mod. Phys. (in the Press).

5. Glauert, H. 1926 Aerofoil and Airscrew Theory .Cambridge University Press.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3