On the baroclinic instability of axisymmetric rotating gravity currents with bottom slope

Author:

CHOBOTER PAUL F.,SWATERS GORDON E.

Abstract

The baroclinic stability characteristics of axisymmetric gravity currents in a rotating system with a sloping bottom are determined. Laboratory studies have shown that a relatively dense fluid released under an ambient fluid in a rotating system will quickly respond to Coriolis effects and settle to a state of geostrophic balance. Here we employ a subinertial two-layer model derived from the shallow-water equations to study the stability characteristics of such a current after the stage at which geostrophy is attained. In the model, the dynamics of the lower layer are geostrophic to leading order, but not quasi-geostrophic, since the height deflections of that layer are not small with respect to its scale height. The upper-layer dynamics are quasi-geostrophic, with the Eulerian velocity field principally driven by baroclinic stretching and a background topographic vorticity gradient.Necessary conditions for instability, a semicircle-like theorem for unstable modes, bounds on the growth rate and phase velocity, and a sufficient condition for the existence of a high-wavenumber cutoff are presented. The linear stability equations are solved exactly for the case where the gravity current initially corresponds to an annulus flow with parabolic height profile with two incroppings, i.e. a coupled front. The dispersion relation for such a current is solved numerically, and the characteristics of the unstable modes are described. A distinguishing feature of the spatial structure of the perturbations is that the perturbations to the downslope incropping are preferentially amplified compared to the upslope incropping. Predictions of the model are compared with recent laboratory data, and good agreement is seen in the parameter regime for which the model is valid. Direct numerical simulations of the full model are employed to investigate the nonlinear regime. In the initial stage, the numerical simulations agree closely with the linear stability characteristics. As the instability develops into the finite-amplitude regime, the perturbations to the downslope incropping continue to preferentially amplify and eventually evolve into downslope propagating plumes. These finally reach the deepest part of the topography, at which point no more potential energy can be released.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3