Steady free convection above a point heat source and a horizontal line heat source in a vertical magnetic field

Author:

Soward A. M.

Abstract

An electrically conducting fluid is contained above a horizontal plane. A uniform vertical magnetic field is applied externally and the plane is maintained at a uniform temperature except for a point or a line heat source. Density variations are ignored except where they give rise to buoyancy forces.(i) The point heat source. Non-linear effects are small sufficiently far from the source. The resulting buoyancy forces interact with the magnetic forces to maintain a radial inflow towards the heat source. This fluid then escapes vertically as a jet, its structure now depending on the additional influence of viscosity. The perturbations of the temperature distribution and the magnetic field due to the motion are obtained. Finally, the effects of these perturbations back on to the fluid velocity are considered. The most striking features of the perturbations are (a) the action of the jet as a line source of heat for the fluid in the outer regions, (b) the large (compared to other perturbations) eddy in the jet.(ii) The line heat source. The temperature distribution and magnetic field are weakly perturbed only if the thermal and electrical conductivities are sufficiently small. Similar results are obtained, as in (i) above, provided ε (a dimensionless number characterising the strength of thermal convection: see (1.32), (3.24)) is less than ¼. However, even for small ε, the effects of thermal convection cannot be ignored. Hence, superimposed on the jet is an eddy (driven by buoyancy forces) whose flux of fluid increases indefinitely with its height above the plane. When ε > ¼, the results suggest that numerous eddies will be formed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Jungclaus, G. 1965 Herleitung allgemeiner magnetohydrodynamischer Grenzschicht-gleichungen mit expliziten Lösungen für das Längsfeld Acta Mechanica,1,265.

2. Toomre, J. 1967 Magnetohydrodynamic jets. Ph.D. Thesis,Cambridge University.

3. Hoult, D. P. 1965 Round laminar jet in an axial magnetic field Phys. Fluids,8,886.

4. Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics .London:Academic.

5. Schlichting, H. 1955 Boundary Layer Theory .London:Pergamon.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3