Author:
BÄBLER MATTHÄUS U.,MORBIDELLI MASSIMO,BAŁDYGA JERZY
Abstract
The breakup of solid aggregates suspended in a turbulent flow is considered. The aggregates are assumed to be small with respect to the Kolmogorov length scale and the flow is assumed to be homogeneous. Further, it is assumed that breakup is caused by hydrodynamic stresses acting on the aggregates, and breakup is therefore assumed to follow a first-order kinetic whereKB(x) is the breakup rate function andxis the aggregate mass. To modelKB(x), it is assumed that an aggregate breaks instantaneously when the surrounding flow is violent enough to create a hydrodynamic stress that exceeds a critical value required to break the aggregate. For aggregates smaller than the Kolmogorov length scale the hydrodynamic stress is determined by the viscosity and local energy dissipation rate whose fluctuations are highly intermittent. Hence, the first-order breakup kinetics are governed by the frequency with which the local energy dissipation rate exceeds a critical value (that corresponds to the critical stress). A multifractal model is adopted to describe the statistical properties of the local energy dissipation rate, and a power-law relation is used to relate the critical energy dissipation rate above which breakup occurs to the aggregate mass. The model leads to an expression forKB(x) that is zero below a limiting aggregate mass, and diverges forx→ ∞. When simulating the breakup process, the former leads to an asymptotic mean aggregate size whose scaling with the mean energy dissipation rate differs by one third from the scaling expected in a non-fluctuating flow.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献