Accelerated flows past a rigid sphere or a spherical bubble. Part 1. Steady straining flow

Author:

Magnaudet Jacques,Rivero Mayela,Fabre Jean

Abstract

This work reports the first part of a series of numerical simulations carried out in order to improve knowledge of the forces acting on a sphere embedded in accelerated flows at finite Reynolds number, Re. Among these forces added mass and history effects are particularly important in order to determine accurately particle and bubble trajectories in real flows. To compute these hydrodynamic forces and more generally to study spatially or temporally accelerated flows around a sphere, the full Navier–Stokes equations expressed in velocity–pressure variables are solved by using a finite-volume approach. Computations are carried out over the range 0.1 ≤ Re ≤ 300 for flows around both a rigid sphere and an inviscid spherical bubble, and a systematic comparison of the flows around these two kinds of bodies is presented.Steady uniform flow is first considered in order to test the accuracy of the simulations and to serve as a reference case for comparing with accelerated situations. Axisymmetric straining flow which constitutes the simplest spatially accelerated flow in which a sphere can be embedded is then studied. It is shown that owing to the viscous boundary condition on the body as well as to vorticity transport properties, the presence of the strain modifies deeply the distribution of vorticity around the sphere. This modification has spectacular consequences in the case of a rigid sphere because it influences strongly the conditions under which separation occurs as well as the characteristics of the separated region. Another very original feature of the axisymmetric straining flow lies in the vortex-stretching mechanism existing in this situation. In a converging flow this mechanism acts to reduce vorticity in the wake of the sphere. In contrast when the flow is divergent, vorticity produced at the surface of the sphere tends to grow indefinitely as it is transported downstream. It is shown that in the case where such a diverging flow extends to infinity a Kelvin–Helmholtz instability may occur in the wake.Computations of the hydrodynamic force show that the effects of the strain increase rapidly with the Reynolds number. At high Reynolds numbers the total drag is dramatically modified and the evaluation of the pressure contribution shows that the sphere undergoes an added mass force whose coefficient remains the same as in inviscid flow or in creeping flow, i.e. CM = ½, whatever the Reynolds number. Changes found in vorticity distribution around the rigid sphere also affect the viscous drag, which is markedly increased (resp. decreased) in converging (resp. diverging) flows at high Reynolds numbers.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference56 articles.

1. Ryskin, G. & Leal, L. G. 1984b Numerical solution of free boundary problems in fluid mechanics. Part 3. Uniaxial straining flow.J. Fluid Mech. 148,37.

2. Clift, R. , Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles .Academic Press.

3. Hadamard, J. S. 1911 Mouvement permanent lent d'une sphére liquide et visqueuse dans un liquide visqueux.C.R. Acad. Sci. Paris 152,1735.

4. Voinov, V. V. , Voinov, O. V. & Petrov, A. G. 1973 Hydrodynamic interactions between bodies in a perfect incompressible fluid and their motion in non-uniform streams.Prikl. Math. Mekh. 37,680.

5. Oliver, D. L. R. & Chung, I. N. 1987 Flow about a sphere at low to moderate Reynolds numbers.J. Fluid Mech. 177,1.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3