Interleaving intrusions produced by internal waves: a laboratory experiment

Author:

GRIFFITHS ROSS W.,BIDOKHTI ALI A.

Abstract

A statically stable stratified water column that also contains horizontal property contrasts (either of passive tracer alone or of two dynamically active solutes) is generated and continuously maintained for a long period by releasing two turbulent buoyant plumes of equal buoyancy fluxes into opposite ends of a long channel of water. The bottom outflows from the plumes also continuously excite internal gravity waves that produce a series of counter-flowing quasi-horizontal shear layers which are quasi-stationary relative to the box but whose phase propagates downward through the upward-moving water column. We report that the flow further involves an oscillation associated with the internal waves that gives rise to a sequence of interleaving intrusions across the horizontal gradient region. The wave-driven intrusions are advected upward with the ‘filling-box’ circulation and have the appearance of a spatially growing instability. The intrusions are examined in cases having no horizontal property differences other than a passive tracer. In further experiments where one plume is salt solution and the other is sugar solution, there is vigorous double-diffusive convection on the interleaving intrusions, including salt fingering and diffusive density interfaces, but this convection has only a weak influence on the intrusion thicknesses and velocities. We conclude that under all conditions attained in these experiments, the interleaving is driven by internal waves and not by the property gradients, and we infer that the wave-generated intrusions enhance double-diffusive buoyancy fluxes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3