Author:
BABATAHERI AVIN,ROPER MARCUS,FERMIGIER MARC,DU ROURE OLIVIA
Abstract
Flexible superparamagnetic filaments (‘fleximags’) are very slender elastic filaments, which can be driven by distributed magnetic torques to mimic closely the behaviour of biological flagella. Previously, fleximags have been used as a basis for artificial micro-swimmers capable of transporting small cargos Dreyfus et al. (Nature, vol. 437, 2005, p. 862). Here, we demonstrate how these filaments can be anchored to a wall to make carpets of artificial micro-magnetic cilia with tunable densities. We analyse the dynamics of an artificial cilium under both planar and three-dimensional beating patterns. We show that the dynamics are controlled by a single characteristic length scale varying with the inverse square root of the driving frequency, providing a mechanism to break the fore and aft symmetry and to generate net fluxes and forces. However, we show that an effective geometrical reciprocity in the filament dynamics creates intrinsic limitations upon the ability of the artificial flagellum to pump fluid when driven in two dimensions.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献