Nonlinear evolution of a weakly unstable wave in a free shear flow with a weak parallel magnetic field

Author:

SHUKHMAN I. G.

Abstract

A study is made of the nonlinear spatial evolution of an externally excited instability wave in a mixing layer of nearly perfectly conducting fluid with a large Reynolds number in a weak parallel magnetic field.It is shown that the evolution pattern bears a resemblance to that of disturbances in a weakly stratified shear flow with the Prandtl number less than unity which was studied in our earlier publication (Shukhman & Churilov 1997): a weak magnetic field, like a weak stratification when Pr<1, has a stabilizing effect on the nonlinear development of disturbances and in the case when the linear growth rate of the wave is not too large leads either to the instability saturation in the viscous critical layer regime or to the establishment of a unsteady nonlinear critical layer regime where the wave amplitude oscillates without exceeding a certain maximum value. In this case the regime of the quasi-steady nonlinear critical layer is not attained evolutionarily. When the linear growth rate is large enough the magnetic field has no dynamical effect on evolution and the quasi-steady nonlinear critical layer regime with the well-known power-law growth of amplitude (Ax2/3) is eventually attained.Also, the critical layer structure and the evolution behaviour in the case of a strong difference of dissipation coefficients (i.e. ordinary viscosity and magnetic viscosity) are considered.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3