The control of boundary-layer transition using a wave-superposition principle

Author:

Thomas Andrew S. W.

Abstract

An experimental study has been made of the concept of controlling boundary-layer transition by superimposing in the flow Tollmien–Schlichting waves that are of equal amplitude and antiphased to the disturbances that grow and lead to transition. The cases that have been considered are transition arising from a single-frequency two-dimensional disturbance and transition arising from a nonlinear interaction between two waves of different frequency. A feedback system for controlling transition has also been studied. In each case, both hot-wire surveys and flow visualization have shown that it is possible to delay transition but that the flow cannot be restored completely to its undisturbed state. This appears to be a consequence of interactions between the very weak three-dimensional background disturbances in the flow and the primary two-dimensional waves. The implications of these findings in an implementation of the concept are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Saric, W. S. & Reynolds, G. A. 1980 In Laminar-Turbulent Transition (ed. R. Eppler & H. Fasel ).Springer.

2. Kachanov, Tu. S. , Koslov, V. V. & Levchenko, V. YA. 1980 In Laminar-Turbulent Transition (ed. R. Eppler & H. Fasel ).Springer.

3. Craik, A. D. D. 1971 J. Fluid Mech. 50,393.

4. Liepmann, H. W. & Nosenchuck, D. M. 1982 J. Fluid Mech. 118,201.

5. Spangler, J. G. & Wells, C. S. 1968 AIAA J. 6,543.

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3