Experimental study of the stability of boundary-layer flow along a heated, inclined plate

Author:

ZUERCHER E. J.,JACOBS J. W.,CHEN C. F.

Abstract

Experiments are conducted to study the longitudinal vortices that develop in the boundary layer on the upper surface of an inclined, heated plate. An isothermal plate in water is inclined at angles ranging from 20 to 60 degrees (from the vertical) while the temperature difference is varied from 2 to 23°C. A double-pass Schlieren system is used to visualize the vortices and particle image velocimetry (PIV) is used to measure velocities. In addition, a unique method is developed such that both the Schlieren visualization and PIV can be performed simultaneously. The wavelengths of the vortices and the critical modified Reynolds numbers (R˜) for the onset, merging, and breakup of the vortices are determined from Schlieren images for Pr=5.8. The critical values for R˜ and the critical wavelengths are compared to results of previous experiments and stability analyses. The spatial growth rates of vortices are determined by using the PIV measurements to determine how the circulation in the vortices grows with distance from the leading edge. This is the first time that the growth rate of the vortices have been found using velocity measurements. These spatial growth rates are compared to the results of Iyer & Kelly (1974) and found to be in general agreement. By defining a suitable circulation threshold, the critical R˜ for the onset of the vortices can be found from the growth curves.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3