On the interaction of surface and internal waves

Author:

Gargettt A. E.,Hughes B. A.

Abstract

The steady-state interaction between surface waves and long internal waves is investigated theoretically using the radiation stress concepts derived by Longuet-Higgins & Stewart (1964) (or Phillips 1966). It is shown that, over internal wave crests, those surface waves for which cg0cosϕ0 > ci experience a change in direction of propagation towards the line of propagation of the internal waves and their amplitudes are increased. Here cg0 is the surface-wave group speed at U = 0, ϕ0 is the angle between the propagation direction of the surface waves at U = 0 and the propagation direction of the internal waves, and ci is the phase speed of the internal waves. If cg0cos ϕ0 < ci the direction of the surface waves is turned away and their amplitudes are decreased. Over troughs the opposite effects occur.At positions where the local velocity of surface-wave energy transmission measured relative to the internal wave phase velocity is zero, i.e. cg + U − ci = 0, there is a singularity in the energy of the surface waves with resulting infinite amplitudes. It is shown that at these critical positions two wavenumbers which were real and distinct on one side coalesce and become complex on the other. The critical positions are thus shown to be barriers to the propagation of those wave-numbers. It is also shown that there is a critical position representing the coalescence of three wavenumbers. Surface-wave crest configurations are shown for three numerical examples. The frequency and direction of propagation of surface waves that exhibit critical positions somewhere in an internal wave field are shown as a function of the maximum horizontal surface current. This is compared with measurements of wind waves that have been reported elsewhere.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference10 articles.

1. Gilchrist, A. W. R. 1966 J. Fluid Mech. 25,795.

2. Perry, R. B. & Schimke, G. R. 1965 J. Geophys. Res. 70 (10),2319.

3. Lafond, E. C. 1962 In The Sea , vol. 1 Interscience.

4. LEE, O. S. 1961 Limnology & Oceanography 6,312.

5. Shand, J. A. 1953 Trans. Am. Geophys. Union,34 (6),849.

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3