A unified framework for nonlinear combustion instability analysis based on the flame describing function

Author:

NOIRAY N.,DUROX D.,SCHULLER T.,CANDEL S.

Abstract

Analysis of combustion instabilities relies in most cases on linear analysis but most observations of these processes are carried out in the nonlinear regime where the system oscillates at a limit cycle. The objective of this paper is to deal with these two manifestations of combustion instabilities in a unified framework. The flame is recognized as the main nonlinear element in the system and its response to perturbations is characterized in terms of generalized transfer functions which assume that the gain and phase depend on the amplitude level of the input. This ‘describing function’ framework implies that the fundamental frequency is predominant and that the higher harmonics generated in the nonlinear element are weak because the higher frequencies are filtered out by the other components of the system. Based on this idea, a methodology is proposed to investigate the nonlinear stability of burners by associating the flame describing function with a frequency-domain analysis of the burner acoustics. These elements yield a nonlinear dispersion relation which can be solved, yielding growth rates and eigenfrequencies, which depend on the amplitude level of perturbations impinging on the flame. This method is used to investigate the regimes of oscillation of a well-controlled experiment. The system includes a resonant upstream manifold formed by a duct having a continuously adjustable length and a combustion region comprising a large number of flames stabilized on a multipoint injection system. The growth rates and eigenfrequencies are determined for a wide range of duct lengths. For certain values of this parameter we find a positive growth rate for vanishingly small amplitude levels, indicating that the system is linearly unstable. The growth rate then changes as the amplitude is increased and eventually vanishes for a finite amplitude, indicating the existence of a limit cycle. For other values of the length, the growth rate is initially negative, becomes positive for a finite amplitude and drops to zero for a higher value. This indicates that the system is linearly stable but nonlinearly unstable. Using calculated growth rates it is possible to predict amplitudes of oscillation when the system operates on a limit cycle. Mode switching and instability triggering may also be anticipated by comparing the growth rate curves. Theoretical results are found to be in excellent agreement with measurements, indicating that the flame describing function (FDF) methodology constitutes a suitable framework for nonlinear instability analysis.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3