Effect of axial flow on viscoelastic Taylor–Couette instability

Author:

GRAHAM M. D.

Abstract

Viscoelastic flow instabilities can arise from gradients in elastic stresses in flows with curved streamlines. Circular Couette flow displays the prototypical instability of this type, when the azimuthal Weissenberg number Weθ is O−1/2), where ε measures the streamline curvature. We consider here the effect of superimposed steady axial Couette or Poiseuille flow on this instability. For inertialess flow of an upper-convected Maxwell or Oldroyd-B fluid in the narrow gap limit (ε[Lt ]1), the analysis predicts that the addition of a relatively weak steady axial Couette flow (axial Weissenberg number Wez=O(1)) can delay the onset of instability until Weθ is significantly higher than without axial flow. Weakly nonlinear analysis shows that these bifurcations are subcritical. The numerical results are consistent with a scaling analysis for Wez[Gt ]1, which shows that the critical azimuthal Weissenberg number for instability increases linearly with Wez. Non-axisymmetric disturbances are very strongly suppressed, becoming unstable only when ε1/2Weθ= O(We2z). A similar, but smaller, stabilizing effect occurs if steady axial Poiseuille flow is added. In this case, however, the bifurcations are converted from subcritical to supercritical as Wez increases. The observed stabilization is due to the axial stresses introduced by the axial flow, which overshadow the destabilizing hoop stress. If only a weak (Wez[les ]1) steady axial flow is added, the flow is actually slightly destabilized. The analysis also elucidates new aspects of the stability problems for plane shear flows, including the exact structure of the modes in the continuous spectrum, and illustrates the connection between these problems and the viscoelastic circular Couette flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3