Laminar–turbulent transition in Poiseuille pipe flow subjected to periodic perturbation emanating from the wall

Author:

ELIAHOU S.,TUMIN A.,WYGNANSKI I.

Abstract

Transition in fully developed circular pipe flow was investigated experimentally by the introduction of periodic perturbations. The simultaneous excitation of the azimuthal periodic modes m=+2 and m=−2 was chosen for detailed analysis. The experiments were carried out at three amplitudes. At the smallest amplitude the disturbances decayed in the direction of streaming. At intermediate input amplitude the disturbances amplified initially but then decayed with increasing distance downstream. Their growth was accompanied by the appearance of higher harmonics. At still higher amplitudes transition occurred. A mean velocity distortion corresponding to an azimuthal index of m=4 was observed at the intermediate and at the higher levels of forcing. When four stationary jets were introduced through the wall to emulate a similar mean velocity distortion, transition was observed at smaller amplitudes of forcing at modes ±2. Thus, weak longitudinal vortices provide an added instability needed to generate a secondary disturbance which, in turn, amplifies the steady vortical structures introduced by the jets. Such vortices may also be generated through the interaction of time-periodic helical modes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. POD-based suppression of the turbulence onset in a pipe;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023

2. POD-based suppression of the turbulence onset in a pipe;Proceeding of 10th International Symposium on Turbulence, Heat and Mass Transfer, THMT-23, Rome, Italy, 11-15 September 2023;2023

3. Energy Gradient Theory for Parallel Flow Stability;Origin of Turbulence;2022

4. Identification of an initial non-linear transition in reciprocating finite-length pipe flow;Physics of Fluids;2021-12

5. Stability of Thixotropic Fluids in Pipe Flow;Scientia Iranica;2017-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3