Countercurrent convection in a double-diffusive boundary layer

Author:

Nilson R. H.

Abstract

Countercurrent flow may be induced by opposing buoyancy forces associated with compositional gradients and thermal gradients within a fluid. The occurrence and structure of such flows is investigated by solving the double-diffusive boundary-layer equations for steady laminar convection along a vertical wall of finite height. Non-similar solutions are derived using the method of matched asymptotic expansions, under the restriction that the Lewis and Prandtl numbers are both large. Two sets of asymptotic solutions are constructed, assuming dominance of one or the other of the buoyancy forces. The two sets overlap in the central region of the parameter space; each set matches up with neighbouring unidirectional similarity solutions at the respective borderlines of incipient counterflow.Interaction between the buoyancy mechanisms is controlled by their relative strength R and their relative diffusivity Le. Flow in the outer thermal boundary layer deviates from single-diffusive thermal convection, depending upon the magnitude of the parameter RLe. Flow in the inner compositional boundary layer deviates from single-diffusive compositional convection, depending upon the magnitude of $RLe^{\frac{1}{3}}$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference33 articles.

1. Nilson, R. H. & Baer, M. R. 1982 Double diffusive counterbuoyant boundary layer in laminar natural convection.Intl J. Heat Mass Transfer 25,285–287.

2. Minkowycz, W. J. & Sparrow, E. M. 1978 Numerical solution scheme for local nonsimilarity boundary layer analysis.Numer. Heat Transfer 1,69–85.

3. Gebhart, B. & Pera, L. 1971 The nature of vertical natural convection resulting from combined buoyancy effects of thermal and mass diffusion.Intl J. Heat Mass Transfer 14,2025–2050.

4. Nilson, R. H. 1981 Natural convective boundary layer on two dimensional and axisymmetric surfaces in high Prandtl number fluids. Trans. ASME C:J. Heat Transfer 103,803–807.

5. Klemp, J. B. & Acrivos, A. 1972 A method of integrating the boundary layer equations through a region of reverse flow.J. Fluid Mech. 53,171–191.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3