Double-diffusive convection instability in a vertical porous enclosure

Author:

MAMOU M.,VASSEUR P.,BILGEN E.

Abstract

The Galerkin and the finite element methods are used to study the onset of the double-diffusive convective regime in a rectangular porous cavity. The two vertical walls of the cavity are subject to constant fluxes of heat and solute while the two horizontal ones are impermeable and adiabatic. The analysis deals with the particular situation where the buoyancy forces induced by the thermal and solutal effects are opposing each other and of equal intensity. For this situation, a steady rest state solution corresponding to a purely diffusive regime is possible. To demonstrate whether the solution is stable or unstable, a linear stability analysis is carried out to describe the oscillatory and the stationary instability in terms of the Lewis number, Le, normalized porosity, ε, and the enclosure aspect ratio, A. Using the Galerkin finite element method, it is shown that there exists a supercritical Rayleigh number, RsupTC, for the onset of the supercritical convection and an overstable Rayleigh number, RoverTC, at which overstability may arise. Furthermore, the overstable regime is shown to exist up to a critical Rayleigh number, RoscTC, at which the transition from the oscillatory to direct mode convection occurs. By using an analytical method based on the parallel flow approximation, the convective heat and mass transfer is studied. It is found that, below the supercritical Rayleigh number, RsupTC, there exists a subcritical Rayleigh number, RsubTC, at which a stable convective solution bifurcates from the rest state through finite-amplitude convection. In the range of the governing parameters considered in this study, a good agreement is observed between the analytical predictions and the finite element solution of the full governing equations. In addition, it is found that, for a given value of the governing parameters, the converged solution can be permanent or oscillatory, depending on the porous-medium porosity value, ε.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3