Abstract
An existence theorem for localized stationary vortex solutions in an external shear
flow is proved. The flow is three-dimensional and quasi-geostrophic in an unbounded
domain. The external flow is unidirectional, with linear horizontal and vertical shear.
The flow conserves an infinite family of Casimir integrals. Flows that have the
same value of all Casimir integrals are called isovortical flows, and the potential vorticity (PV) fields of isovortical flows are stratified rearrangements of one another. The theorem guarantees the existence of a maximum-energy flow in any family of isovortical flows that satisfies the following conditions: the PV-anomaly must have compact support, it must have the same sign everywhere, and this sign must be the same as the sign of the external horizontal shear over the vertical interval to which the support of the PV-anomaly is confined. This flow represents a stationary and localized vortex, and the maximum-energy property implies that the vortex is stable. The PV-anomaly decreases monotonically outward from the vortex centre in each horizontal plane, but apart from this the profile is arbitrary.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献