Stationary vortices in three-dimensional quasi-geostrophic shear flow

Author:

BURTON G. R.,NYCANDER J.

Abstract

An existence theorem for localized stationary vortex solutions in an external shear flow is proved. The flow is three-dimensional and quasi-geostrophic in an unbounded domain. The external flow is unidirectional, with linear horizontal and vertical shear. The flow conserves an infinite family of Casimir integrals. Flows that have the same value of all Casimir integrals are called isovortical flows, and the potential vorticity (PV) fields of isovortical flows are stratified rearrangements of one another. The theorem guarantees the existence of a maximum-energy flow in any family of isovortical flows that satisfies the following conditions: the PV-anomaly must have compact support, it must have the same sign everywhere, and this sign must be the same as the sign of the external horizontal shear over the vertical interval to which the support of the PV-anomaly is confined. This flow represents a stationary and localized vortex, and the maximum-energy property implies that the vortex is stable. The PV-anomaly decreases monotonically outward from the vortex centre in each horizontal plane, but apart from this the profile is arbitrary.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A mathematically rigorous analysis of forced axisymmetric flows in the atmosphere;Quarterly Journal of the Royal Meteorological Society;2014-12-13

2. Stability investigation for steady solutions of the barotropic vorticity equation in;Communications in Nonlinear Science and Numerical Simulation;2013-03

3. Existence of energy maximizing vortices in a three-dimensional quasigeostrophic shear flow with bounded height;Nonlinear Analysis: Real World Applications;2010-06

4. A Baroclinic Laminar State for Rotating Stratified Flows;Journal of the Atmospheric Sciences;2008-08-01

5. Existence of energy minimizing vortices attached to a flat-top seamount;Nonlinear Analysis: Real World Applications;2007-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3