Large eddy simulation of a circular jet: effect of inflow conditions on the near field

Author:

KIM JUNGWOO,CHOI HAECHEON

Abstract

In the present study, the effects of the jet inflow conditions such as the initial momentum thickness (θ) and background disturbances on the downstream evolution of a circular jet are investigated using large eddy simulation (LES). We consider four different initial momentum thicknesses,D/θ = 50, 80, 120 and 180, and three different Reynolds numbers,ReD=UJD/ν = 3600, 104and 105, whereUJis the jet inflow velocity andDis the jet diameter. The present study shows that the jet characteristics significantly depend on both the initial momentum thickness and the Reynolds number. For all the Reynolds numbers considered in this study, vortex rings are generated at an earlier position with decreasing initial momentum thickness. In case of a relatively low Reynolds number ofReD= 3600, at smaller initial momentum thickness, early growth of the shear layer due to the early generation of vortex ring leads to the occurrence of large-scale coherent structures in earlier downstream locations, which results in larger mixing enhancement and more rapid increase in turbulence intensity. However, at a high Reynolds number such asReD= 105, with decreasing initial momentum thickness, rapid growth of the shear layer leads to the saturation of the shear layer and the generation of fine-scale turbulence structures, which reduces mixing and turbulence intensity. With increasingReθ(=UJθ/ν), the characteristic frequency corresponding to the shear layer mode (Stθ=fθ/UJ) gradually increases and reaches near 0.017 predicted from the inviscid instability theory. On the other hand, the frequency corresponding to the jet-preferred mode (StD=f D/UJ) varies depending onReDandD/θ. From a mode analysis, we show that, in view of the energy of the axial velocity fluctuations integrated over the radial direction, the double-helix mode (mode 2) becomes dominant past the potential core, but the axisymmetric mode (mode 0) is dominant near the jet exit. In view of the local energy, the disturbances grow along the shear layer near the jet exit: for thick shear layer, mode 0 grows much faster than other modes, but modes 0–3 grow almost simultaneously for thin shear layer. However, past the potential core, the dominant mode changes from mode 0 near the centreline to mode 1 and then to mode 2 with increasing radial direction regardless of the initial shear layer thickness.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3