The dynamics of the near field of strong jets in crossflows

Author:

Coelho Sergio L. V.,Hunt J. C. R.

Abstract

An inviscid three-dimensional vortex-sheet model for the near field of a strong jet issuing from a pipe into a crossflow is derived. The solution for this model shows that the essential mechanisms governing this idealized flow are the distortion of the main transverse vorticity by the generation of additional axial and transverse vorticity within the pipe owing to the pressure gradients induced by the external flow, and the convection of both components of vorticity from the upwind side of the jet to its downwind side.The deformation of the cross-section of the jet which is predicted by this model is compared with the deformation predicted by the commonly used time-dependent two-dimensional vortex-sheet model. Differences arise because the latter model does not take into account the effects of the transport of the transverse component of vorticity. The complete three-dimensional vortex-sheet model leads to a symmetrical deformation of the jet cross-section and no overall deflection of the jet in the direction of the stream.To account for viscous effects, the initial region of a strong jet issuing into a uniform crossflow is modelled as an entraining three-dimensional vortex sheet, which acts like a sheet of vortices and sinks, redistributing the vorticity in the bounding shear layer and inducing non-symmetrical deformations of the cross-section of the jet. This leads to a deflection of the jet in the direction of the stream, and the loci of the centroids of the cross-sections of the jet describe a quadratic curve.Deformations predicted by each of the three models are compared with measurements obtained from photographs of the cross-sections of a jet of air emerging into a uniform crossflow in a wind tunnel. Mean velocity measurements around the jet made with a hot-wire anemometer agree with the theory; they clearly invalidate models of jets based on ‘pressure drag’.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3