The motion generated by a body moving along the axis of a uniformly rotating fluid

Author:

Pritchard W. G.

Abstract

Experiments have been made to investigate the motion generated by a body moving along the axis of a uniformly rotating fluid.Part of the investigation concerns the motion generated in a cylinder whose radial dimensions are much greater than those of the body. Measurements have been made of the velocities of particles on the axis of rotation both ahead of and behind the body, and the results indicate that there is a significant axial motion generated by the body over a wide range of Rossby numbers. A measurement of the instantaneous velocity profile ahead of the body, determined as a function of the radius, agrees fairly well with a low Rossby number calculation of the flow due to a circular disk (Morgan 1951). In addition, the forward influence of the body has been measured as a function of the Rossby number and from these results it is suggested that the body has a finite influence far upstream at all Rossby numbers and that the blocking phenomenon first reported by Taylor (1922) probably occurs for all values of the Rossby number (UΩa) less than a critical value which is about 0·7.Experiments have also been made in a long cylindrical tube which acts as a wave guide. At large distances from the body the separate effects of the various modes can be observed and hence it is possible to measure the flow corresponding to an individual wave-number: these measurements show that, as a result of the Doppler effect, the motion a large distance ahead of the body is different from that far behind (see Lighthill 1967). Moreover, the experiments indicate that no disturbances propagate ahead of the body when its velocity exceeds the maximum group velocity in the fluid, but that disturbances trail behind the body when its velocity is far in excess of the maximum group velocity. Measurements of the maximum group velocity are in good agreement with the theoretical value.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

1. Pritchard, W. G. 1968 A study of wave motions in rotating fluids. Ph.D. dissertation,University of Cambridge.

2. Morgan, G. W. 1951 A study of motions in a rotating liquid.Proc. Roy. Soc. Lond. A206,108.

3. Stewartson, K. 1958 On the motion of a sphere along the axis of a rotating fluid Quart. J. Mech. Appl. Math. 11,39. 1969 Corrigenda 22,257.

4. Miles, J. W. 1969b Transient motion of a dipole in a rotating flow.J. Fluid Mech. 39,433.

5. Long, R. R. 1953 Steady motion around a symmetrical obstacle moving along the axis of a rotating liquid J. Meteorology,10,197.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3