Author:
LEGENDRE DOMINIQUE,LAUGA ERIC,MAGNAUDET JACQUES
Abstract
We study numerically the two-dimensional flow past a circular cylinder as a prototypical transitional flow, and investigate the influence of a generic slip boundary condition on the wake dynamics. We show that slip significantly delays the onset of recirculation and shedding in the wake behind the cylinder. As expected, the drag on the cylinder decreases with slip, with an increased drag sensitivity for large Reynolds numbers. We also show that past the critical shedding Reynolds number, slip decreases the vorticity intensity in the wake, as well as the lift forces on the cylinder, but increases the shedding frequency. We further provide evidence that the shedding transition can be interpreted as a critical accumulation of surface vorticity, similarly to related studies on wake instability of axisymmetric bodies. Finally, we propose that our results could be used as a passive method to infer the effective friction properties of slipping surfaces.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献