Effects of pressure gradients on turbulent premixed flames

Author:

VEYNANTE DENIS,POINSOT THIERRY

Abstract

In most practical situations, turbulent premixed flames are ducted and, accordingly, subjected to externally imposed pressure gradients. These pressure gradients may induce strong modifications of the turbulent flame structure because of buoyancy effects between heavy cold fresh and light hot burnt gases. In the present work, the influence of a constant acceleration, inducing large pressure gradients, on a premixed turbulent flame is studied using direct numerical simulations.A favourable pressure gradient, i.e. a pressure decrease from unburnt to burnt gases, is found to decrease the flame wrinkling, the flame brush thickness, and the turbulent flame speed. It also promotes counter-gradient turbulent transport. On the other hand, adverse pressure gradients tend to increase the flame brush thickness and turbulent flame speed, and promote classical gradient turbulent transport. As proposed by Libby (1989), the turbulent flame speed is modified by a buoyancy term linearly dependent on both the imposed pressure gradient and the integral length scale lt.A simple model for the turbulent flux u″c″ is also proposed, validated from simulation data and compared to existing models. It is shown that turbulent premixed flames can exhibit both gradient and counter-gradient transport and a criterion integrating the effects of pressure gradients is derived to differentiate between these regimes. In fact, counter-gradient diffusion may occur in most practical ducted flames.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3