Abstract
The boundary value problem for the nonlinear shallow-water equations with a beach source term is solved by direct use of physical variables, so that solutions are more easily inspected than those obtained by means of hodograph transformations. Beyond an overall description of the near-shoreline flows in terms of the nonlinear shallow-water equations, significant results are provided by means of a perturbation approach which enables much of the information on the flow to be retained. For sample waves of interest (periodic and solitary), first-order solutions of the shoreline motion and of the near-shoreline flows are computed, illustrated and successfully compared with the equivalent ones obtained through a hodograph transformation method previously developed by the authors. Wave–wave interaction, both at the seaward boundary and within the domain, is also accurately described. Analytical conditions for wave breaking within the domain are provided. These, compared with the authors' hodograph model, show that the first-order condition of the present model is comparable to the second-order condition of that model.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献