On the direct initiation of gaseous detonations by an energy source

Author:

He Longting,Clavin Paul

Abstract

A new criterion for the direct initiation of cylindrical or spherical detonations by a localized energy source is presented. The analysis is based on nonlinear curvature effects on the detonation structure. These effects are first studied in a quasi-steady-state approximation valid for a characteristic timescale of evolution much larger than the reaction timescale. Analytical results for the square-wave model and numerical results for an Arrhenius law of the quasi-steady equations exhibit two branches of solutions with a C-shaped curve and a critical radius below which generalized Chapman–Jouguet (CJ) solutions cannot exist. For a sufficiently large activation energy this critical radius is much larger than the thickness of the planar CJ detonation front (typically 300 times larger at ordinary conditions) which is the only intrinsic lengthscale in the problem. Then, the initiation of gaseous detonations by an ideal point energy source is investigated in cylindrical and spherical geometries for a one-step irreversible reaction. Direct numerical simulations show that the upper branch of quasi-steady solutions acts as an attractor of the unsteady blast waves originating from the energy source. The critical source energy, which is associated with the critical point of the quasi-steady solutions, corresponds approximately to the boundary of the basin of attraction. For initiation energy smaller than the critical value, the detonation initiation fails, the strong detonation which is initially formed decays to a weak shock wave. A successful initiation of the detonation requires a larger energy source. Transient phenomena which are associated with the intrinsic instability of the quasi-steady detonations branch develop in the induction timescale and may induce additional mechanisms close to the critical condition. In conditions of stable or weakly unstable planar detonations, these unsteady phenomena are important only in the vicinity of the critical conditions. The criterion of initiation derived in this paper works to a good approximation and exhibits the huge numerical factor, 106–108, which has been experimentally observed in the critical value of the initiation energy.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference26 articles.

1. He, L. T. & Clavin, P. 1992 Critical conditions for detonation initiation in cold gaseous mixtures by nonuniform hot pockets of reactive gases.In 24th Symp. (Intl) on Combustion , pp.1861–1867.The Combustion Institute.

2. Klein, R. & Stewart, D. S. 1993 The influence of the reaction rate - state dependence on the curvature-detonation speed relation.SIAM J. Appl. Maths 54,1401.

3. Desbordes, D. 1986 Correlations between shock flame predetonation zone size and cell spacing in critically initiated spherical detonations.Prog. Astronaut. Aeronaut. 106,166.

4. Gelfand, B. E. , Frolov, S. M. & Nettleton, M. A. 1991 Gaseous detonations - A selected review.Prog. Energy Combust. Sci. 17,327.

5. Fickett, N. & Davis, W. C. 1979 Detonation .University of California Press.Berkeley.

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3