On the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces

Author:

DIMITRAKOPOULOS P.,HIGDON J. J. L.

Abstract

The yield conditions for the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces are studied through a series of numerical computations. The study considers both sessile and pendant droplets and includes interfacial forces with constant surface tension. An extensive study is conducted, covering a wide range of Bond numbers Bd, angles of inclination β and advancing and receding contact angles, θA and θR. This study seeks the optimal shape of the contact line which yields the maximum displacing force (or BTBd sin β) for which a droplet can adhere to the surface. The yield conditions BT are presented as functions of (Bd or β, θA, Δθ) where Δθ = θA − θR is the contact angle hysteresis. The solution of the optimization problem provides an upper bound for the yield condition for droplets on inclined solid surfaces. Additional contraints based on experimental observations are considered, and their effect on the yield condition is determined. The numerical solutions are based on the spectral boundary element method, incorporating a novel implementation of Newton's method for the determination of equilibrium free surfaces and an optimization algorithm which is combined with the Newton iteration to solve the nonlinear optimization problem. The numerical results are compared with asymptotic theories (Dussan V. & Chow 1983; Dussan V. 1985) and the useful range of these theories is identified. The normal component of the gravitational force BNBd cos β was found to have a weak effect on the displacement of sessile droplets and a strong effect on the displacement of pendant droplets, with qualitatively different results for sessile and pendant droplets.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3