The stability and transition of the boundary layer on a rotating sphere

Author:

GARRETT S. J.,PEAKE N.

Abstract

This paper is concerned with convective and absolute instabilities in the boundary-layer flow over the outer surface of a sphere rotating in an otherwise still fluid. Viscous and streamline-curvature effects are included and the analysis is conducted between latitudes of 10° and 80° from the axis of rotation. Both convective and absolute instabilities are found at each latitude within specific parameter spaces. The results of the convective instability analysis show that a crossflow instability mode is the most dangerous below θ = 66°. Above this latitude a streamline-curvature mode is found to be the most dangerous, which coincides with the appearance of reverse flow in the radial component of the mean flow. At low latitudes the disturbances are considered to be stationary, but at higher latitudes they are taken to rotate at 76% of the sphere surface speed, as observed in experimental studies. Our predictions of the Reynolds number and vortex angle at the onset of convective instability are consistent with existing experimental measurements. Results are also presented that suggest that the occurrence of the slowly rotating vortices is associated with the dominance of the streamline-curvature mode at θ = 66°. The local Reynolds number at the predicted onset of absolute instability matches experimental data well for the onset of turbulence at θ = 30°; beyond this latitude the discrepancy increases but remains relatively small below θ = 70°. It is suggested that this absolute instability may cause the onset of transition below θ = 70°. Close to the pole the predictions of each stability analysis are seen to approach those of existing rotating disk investigations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3