The transient behaviour of alloys solidified from below prior to the formation of chimneys

Author:

Worster M. Grae,Kerr Ross C.

Abstract

We investigate interactions between interfacial disequilibrium and compositional convection during the freezing of an alloy from below to form a mushy layer. A theoretical model is developed in which a stagnant mushy layer underlies a melt that is convecting vigorously, driven by compositional gradients associated with undercooling at the mush-liquid interface. In a series of laboratory experiments, we measure the interfacial undercooling in aqueous solutions of ammonium chloride contaminated to varying degrees by copper sulphate. It has recently been found (Huppert & Hallworth 1993) that a small amount of copper sulphate added to a solution of ammonium chloride significantly inhibits the formation of chimneys in the mushy layer that forms when the solution is cooled below its liquidus. It is our thesis that this phenomenon can be explained in large part by the consequences of the interactions between compositional convection and interfacial undercooling that are investigated herein. The measured undercooling is a function of the rate of advance of the interface and is found to be a very strong, increasing function of the concentration of copper sulphate in solution. The theoretical model is evaluated using parameter values appropriate to the experimental system and it is found that the transient development of the mushy layer depends significantly on the level of interfacial disequilibrium. In particular, it is predicted that the time taken for the Rayleigh number associated with the mushy layer to reach any particular value increases enormously as the level of interfacial disequilibrium increases and that the Rayleigh number can have an upper bound that is less than the critical value needed for the onset of convection within the mushy layer. This suggests that the formation of chimneys in the mushy layer can be similarly delayed or prohibited, in agreement with the experimental findings of Huppert & Hallworth (1993). Additionally, the model predicts that under certain conditions the solid fraction can increase away from the cooled boundary leading to trapping of the interstitial liquid. The model also describes a mechanism for macrosegregation of alloys cooled and solidified from below.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

1. Kirkpatrick, R. J. , Robinson, G. R. & Hays, J. F. 1976 Kinetics of crystal growth from silicate melts: anorthite and diopside.J. Geophys. Res. 81,5715–5720.

2. Huppert, H. E. 1990 The fluid dynamics of solidification.J. Fluid Mech. 212,209–240.

3. Tait, S. , Jahrling, K. & Jaupart, C. 1992 The planform of compositional convection and chimney formation in a mushy layer.Nature 359,406–408.

4. Copley, S. M. , Giamei, A. F. , Johnson, S. M. & Hornbecker, M. F. 1970 The origin of freckles in binary alloys.IMA J. Appl. Maths 35,159–174.

5. Emms, P. W. & Fowler, A. C. 1994 Compositional convection and freckle formation in the solidification of binary alloys.J. Fluid Mech. 262,111–139.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3