Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet

Author:

MI J.,NOBES D. S.,NATHAN G. J.

Abstract

The influence of initial flow conditions on the passive scalar field of a turbulent free jet issuing from the round nozzle is investigated in this paper by a review of the literature and a detailed experimental study. Two sets of distinctly different initial conditions are generated using two nozzle types: a smooth contraction and a long straight pipe. The present measurements of the passive scalar (temperature) field were conducted in a slightly heated air jet from each nozzle at a Reynolds number of 16 000 using identical experimental facilities and a single measurement technique. Significant differences between the flows from the two nozzles are revealed throughout the measured flow region which covers the axial range from 0 to 70 jet exit diameters. The study suggests that the differences observed in the statistics of the scalar field may be related to differences in the underlying turbulence structure of the jet in the near field. The present findings support the analytical result of George (1989) that the entire flow is influenced by the initial conditions, resulting in a variety of self-similar states in the far field.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 235 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large eddy simulation of round jets with mild temperature difference;International Journal of Mechanical Sciences;2024-12

2. Thermal analysis of a turbulent wall jet over an adiabatic wavy surface;International Journal of Thermal Sciences;2024-04

3. Theoretical and experimental analysis of the critical velocity of interface instability in gas jet forming;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2024-03-19

4. Turbulent mean flow prediction in impinging jets using data assimilation methods;Physics of Fluids;2024-03-01

5. High-resolution experiments for mixing in large enclosures;Nuclear Engineering and Design;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3