Plasma motions in narrow capillary flow

Author:

Fitz-Gerald J. M.

Abstract

Plasma motions in the gaps between successive red cells in narrow-capillary blood flow are obtained in an idealized model, using a series of eigenfunctions to represent the disturbance to a basic Poiseuille flow created by the cells. The flow is matched, in the narrow entry and exit regions, to the lubrication flow in the constricted zone around the red cell (Fitz-Gerald 1969). Basically, the circulating toroidal motion predicted by Prothero & Burton (1961) is obtained in a reference frame in which the cells are considered stationary. Small secondary circulations are also found near the axis and close to the red cells, whose intensity is controlled by the amount of leakback past the cells. Zones of high shear are found along the capillary wall and in some cases on part of the red-cell face; implications of this for mass transport are discussed (see §4). Because of the unusual behaviour of the slowest-decaying dominant eigenfunction circulation and wall shear increase as the cell spacing decreases, contrary to expectation, until the spacing becomes very small indeed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

1. Scarton, H. A. & Rouleau W. T. 1971a (To be published.)

2. Zidan M. von 1969 Rheologica Acta,8,89.

3. Fitz-Gerald J. M. 1969 Proc. Roy. Soc. B 174,193.

4. Lighthill M. J. 1969 CIBA Symposium on Circulatory and Respiratory Mass Transport , p.85.London:ChurchillM.

5. Bugliarello, O. & Hsiao G. C. 1970 Biorheology,7,5.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3