Instability of rotating convection

Author:

COX S. M.,MATTHEWS P. C.

Abstract

Convection rolls in a rotating layer can become unstable to the Küppers–Lortz instability. When the horizontal boundaries are stress free and the Prandtl number is finite, this instability diverges in the limit where the perturbation rolls make a small angle with the original rolls. This divergence is resolved by taking full account of the resonant mode interactions that occur in this limit: it is necessary to include two roll modes and a large-scale mean flow in the perturbation. It is found that rolls of critical wavelength whose amplitude is of order ε are always unstable to rolls oriented at an angle of order ε2/5. However, these rolls are unstable to perturbations at an infinitesimal angle if the Taylor number is greater than 4π4. Unlike the Küppers–Lortz instability, this new instability at infinitesimal angles does not depend on the direction of rotation; it is driven by the flow along the axes of the rolls. It is this instability that dominates in the limit of rapid rotation. Numerical simulations confirm the analytical results and indicate that the instability is subcritical, leading to an attracting heteroclinic cycle. We show that the small-angle instability grows more rapidly than the skew-varicose instability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3