Author:
MERCIER MATTHIEU J.,MARTINAND DENIS,MATHUR MANIKANDAN,GOSTIAUX LOUIS,PEACOCK THOMAS,DAUXOIS THIERRY
Abstract
We present the results of a combined experimental and numerical study of the generation of internal waves using the novel internal wave generator design of Gostiaux et al. (Exp. Fluids, vol. 42, 2007, pp. 123–130). This mechanism, which involves a tunable source composed of oscillating plates, has so far been used for a few fundamental studies of internal waves, but its full potential is yet to be realized. Our study reveals that this approach is capable of producing a wide variety of two-dimensional wave fields, including plane waves, wave beams and discrete vertical modes in finite-depth stratifications. The effects of discretization by a finite number of plates, forcing amplitude and angle of propagation are investigated, and it is found that the method is remarkably efficient at generating a complete wave field despite forcing only one velocity component in a controllable manner. We furthermore find that the nature of the radiated wave field is well predicted using Fourier transforms of the spatial structure of the wave generator.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献