The stability of an incompressible two-dimensional wake

Author:

Mattingly G. E.,Criminale W. O.

Abstract

The growth of small disturbances in a two-dimensional incompressible wake has been investigated theoretically and experimentally. The theoretical analysis is based upon inviscid stability theory wherein small disturbances are considered from both temporal and spatial reference frames. Through a combined stability analysis, in which small disturbances are permitted to amplify in both time and space, the relationship between the disturbance characteristics for the temporal and spatial reference frames is shown. In these analyses a quasi-uniform assumption is adopted to account for the continuously varying mean-velocity profiles that occur behind flat plates and thin airfoils. It is found that the most unstable disturbances in the wake produce transverse oscillations in the mean-velocity profile and correspond to growing waves that have a minimum group velocity.Experimentally, the downstream development of the wake of a thin airfoil and the wave characteristics of naturally amplifying small disturbances are investigated in a water tank. The disturbances that develop are found to produce transverse oscillations of the mean-velocity profile in agreement with the theoretical prediction. From the comparison of the experimental results with the predictions for the characteristics of the most unstable waves via the temporal and spatial analyses, it is concluded that the stability analysis for the wake is to be considered solely from the more realistic spatial viewpoint. Undoubtedly, this conclusion is also applicable to other highly unstable flows such as jets and free shear layers.In accordance with the disturbance vorticity distribution as determined from the spatial model, a description of the initial development of a vortex street is put forth that contrasts with the description given by Sato & Kuriki (1961).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference16 articles.

1. Gaster, M. 1968 Growth of disturbances in both space and time.Phys. FEuids,11,723.

2. Gaster, M. 1965 The role of spatially growing waves in the theory of hydrodynamic stability.Prog. Aeron. Sci. 6,251.

3. Mattingly, G. E. 1968 The stability of a two-dimensional incompressible wake.Dept. Aerospace Mech. Sci., Princeton University,Rep. no. 858.

4. Freymuth, P. 1966 On transition in a separated laminar boundary layer.J. Fluid Mech. 25,683.

5. Betchov, R. & Szewczyk, A. A. 1963 Stability of a shear layer between parallel streams.Phys. Fluids,6,1391.

Cited by 167 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3