Towards the development of a multiscale, multiphysics method for the simulation of rarefied gas flows

Author:

KESSLER DAVID A.,ORAN ELAINE S.,KAPLAN CAROLYN R.

Abstract

We introduce a coupled multiscale, multiphysics method (CM3) for solving for the behaviour of rarefied gas flows. The approach is to solve the kinetic equation for rarefied gases (the Boltzmann equation) over a very short interval of time in order to obtain accurate estimates of the components of the stress tensor and heat-flux vector. These estimates are used to close the conservation laws for mass, momentum and energy, which are subsequently used to advance continuum-level flow variables forward in time. After a finite time interval, the Boltzmann equation is solved again for the new continuum field, and the cycle is repeated. The target applications for this type of method are transition-regime gas flows for which standard continuum models (e.g. Navier–Stokes equations) cannot be used, but solution of Boltzmann's equation is prohibitively expensive. The use of molecular-level data to close the conservation laws significantly extends the range of applicability of the continuum conservation laws. In this study, the CM3 is used to perform two proof-of-principle calculations: a low-speed Rayleigh flow and a thermal Fourier flow. Velocity, temperature, shear-stress and heat-flux profiles compare well with direct-simulation Monte Carlo solutions for various Knudsen numbers ranging from the near-continuum regime to the transition regime. We discuss algorithmic problems and the solutions necessary to implement the CM3, building upon the conceptual framework of the heterogeneous multiscale methods.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3