On the interaction of a collapsing cavity and a compliant wall

Author:

Duncan J. H.,Zhang S.

Abstract

The collapse of a spherical vapour cavity in the vicinity of a compliant boundary is examined numerically. The fluid is treated as a potential flow and a boundary-element method is used to solve Laplace's equation for the velocity potential. Full nonlinear boundary conditions are applied on the surface of the cavity. The compliant wall is modelled as a membrane with a spring foundation. At the interface between the fluid and the membrane, the pressure and vertical velocity in the flow are matched to the pressure and vertical velocity of the membrane using linearized conditions. The results of calculations are presented which show the effect of the parameters describing the flow (the initial cavity size and position, the fluid density and the pressure driving the collapse) and the parameters describing the compliant wall (the mass per unit area, membrane tension, spring constant and coating radius) on the interaction between the two. When the wall is rigid, the collapse of the cavity is characterized by the formation of a re-entrant jet that is directed toward the wall. However, if the properties of the compliant wall are chosen properly, the collapse can be made to occur spherically, as if the cavity were in an infinite fluid, or with the reentrant jet directed away from the wall, as if the cavity were adjacent to a free surface. This behaviour is in qualitative agreement with the experiments of Gibson & Blake (1982) and Shima, et al. (1989). Calculations of the transfer of energy between the flow and the coating are also presented.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3