The formation of shear and density layers in stably stratified turbulent flows: linear processes

Author:

GALMICHE M.,HUNT J. C. R.

Abstract

The initial evolution of the momentum and buoyancy fluxes in a freely decaying, stably stratified homogeneous turbulent flow with r.m.s. velocity u0 and integral lengthscale l0 is calculated using a weakly inhomogeneous and unsteady form of the rapid distortion theory (RDT) in order to study the growth of small temporal and spatial perturbations in the large-scale mean stratification N(z, t) and mean velocity profile ū(z, t) (here N is the local Brunt–Väisälä frequency and ū is the local velocity of the horizontal mean flow) when the ratio of buoyancy forces to inertial forces is large, i.e. Nl0/u0[Gt ]1. The lengthscale L of the perturbations in the mean profiles of stratification and shear is assumed to be large compared to l0 and the presence of a uniform background mean shear can be taken into account in the model provided that the inertial shear forces are still weaker than the buoyancy forces, i.e. when the Richardson number Ri = (N/∂zū)2[Gt ]1 at each height.When a mean shear perturbation is introduced initially with no uniform background mean shear and uniform stratification, the analysis shows that the perturbations in the mean flow profile grow on a timescale of order N-1. When the mean density profile is perturbed initially in the absence of a background mean shear, layers with significant density gradient fluctuations grow on a timescale of order N−10 (where N0 is the order of magnitude of the initial Brunt–Väisälä frequency) without any associated mean velocity gradients in the layers. These results are in good agreement with the direct numerical simulations performed by Galmiche et al. (2002) and are consistent with the earlier physically based conjectures made by Phillips (1972) and Posmentier (1977). The model also shows that when there is a background mean shear in combination with perturbations in the mean stratification, negative shear stresses develop which cause the mean velocity gradient to grow in the density layers. The linear analysis for short times indicates that the scale on which the mean perturbations grow fastest is of order u0/N0, which is consistent with the experiments of Park et al. (1994).We conclude that linear mechanisms are widely involved in the formation of shear and density layers in stratified flows as is observed in some laboratory experiments and geophysical flows, but note that the layers are also significantly influenced by nonlinear and dissipative processes at large times.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3