The mixing layer and its coherence examined from the point of view of two-dimensional turbulence

Author:

Lesieur Marcel,Staquet Chantal,Roy Pascal Le,Comte Pierre

Abstract

A two-dimensional numerical large-eddy simulation of a temporal mixing layer submitted to a white-noise perturbation is performed. It is shown that the first pairing of vortices having the same sign is responsible for the formation of a continuous spatial longitudinal energy spectrum of slope between k−4 and k−3. After two successive pairings this spectral range extends to more than 1 decade. The vorticity thickness, averaged over several calculations differing by the initial white-noise realization, is shown to grow linearly, and eventually saturates. This saturation is associated with the finite size of the computational domain.We then examine the predictability of the mixing layer, considering the growth of decorrelation between pairs of flows differing slightly at the first roll-up. The inverse cascade of error through the kinetic energy spectrum is displayed. The error rate is shown to grow exponentially, and saturates together with the levelling-off of the vorticity thickness growth. Extrapolation of these results leads to the conclusion that, in an infinite domain, the two fields would become completely decorrelated. It turns out that the two-dimensional mixing layer is an example of flow that is unpredictable and possesses a broadband kinetic energy spectrum, though composed mainly of spatially coherent structures.It is finally shown how this two-dimensional predictability analysis can be associated with the growth of a particular spanwise perturbation developing on a Kelvin-Helmholtz billow: this is done in the framework of a one-mode spectral truncation in the spanwise direction. Within this analogy, the loss of two-dimensional predictability would correspond to a return to three-dimensionality and a loss of coherence. We indicate also how a new coherent structure could then be recreated, using an eddy-viscosity assumption and the linear instability of the mean inflexional shear.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference54 articles.

1. Schwarztrauber, P. & Sweet R. 1980 Efficient fortran subprograms for the solution of EPD equations.Rep. NCAR. Boulder, Colorado.

2. Winant, C. D. & Browand F. K. 1974 Vortex pairing: the mechanism of turbulent mixing layer growth at moderate Reynolds number.J. Fluid Mech. 63,237–255.

3. Staquet C. 1985 Etude numérique de la transition à la turbulence bidimensionnelle dans une couche de mélange. Thèse de I'Université de Grenoble.

4. Wood, D. H. & Bradshaw P. 1982 A turbulent mixing layer constrained by a solid wall.J. Fluid Mech. 122,57–90.

5. Riley, J. J. & Metcalfe R. W. 1980 Direct numerical simulation of a perturbed turbulent mixing layer.AIAA 18th Aerospace Sci. Meeting, Pasadena,80–0274.

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3