Dynamics of a stratified shear layer above a region of uniform stratification

Author:

PHAM HIEU T.,SARKAR SUTANU,BRUCKER KYLE A.

Abstract

Direct numerical simulations (DNS) are performed to investigate the behaviour of a weakly stratified shear layer in the presence of a strongly stratified region beneath it. Both, coherent Kelvin–Helmholtz (KH) rollers and small-scale turbulence, are observed during the evolution of the shear layer. The deep stratification measured by the Richardson number Jd is varied to study its effect on the dynamics. In all cases, a pycnocline is found to develop at the edges of the shear layer. The region of maximum shear shifts downward with increasing time. Internal waves are excited, initially by KH rollers, and later by small-scale turbulence. The wave field generated by the KH rollers is narrowband and of stronger amplitude than the broadband wave field generated by turbulence. Linear theory based on Doppler-shifted frequency of the KH mode is able to predict the angle of the internal wave phase lines during the direct generation of internal waves by KH rollers. Waves generated by turbulence are relatively weaker with a broader range of excitation angles which, in the deep region, tend towards a narrower band. The linear theory that works for the internal waves excited by KH rollers does not work for the turbulence generated waves. The momentum transported by the internal waves into the interior can be large, about 10% of the initial momentum in the shear layer, when Jd ≃ 0.25. Integration of the turbulent kinetic energy budget in time and over the shear layer thickness shows that the energy flux can be up to 17% of the turbulent production, 33% of the turbulent dissipation rate and 75% of the buoyancy flux. These numbers quantify the dynamical importance of internal waves. In contrast to linear theory where the effect of deep stratification on the shear layer instabilities has been found to be weak, the present nonlinear simulations show that the evolution of the shear layer is significantly altered because of the significant momentum and energy carried away by the internal waves.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3